organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-tert-Butyl-4'-(4-methoxyphenyl)-3'-(4methylphenyl)-1,2,3,4-tetrahydrospiro-[naphthalene-2,5'(4'H)-1,2-oxazol]-1-one

Mohamed Akhazzane,^a Hafid Zouihri,^b Maria Daoudi,^a Abdelali Kerbal^a and Ghali Al Houari^a*

^aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and ^bLaboratoire de Diffraction des Rayons X, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco

Correspondence e-mail: ghali68@yahoo.fr

Received 27 October 2010; accepted 28 October 2010

Key indicators: single-crystal X-ray study; T = 296 K, P = 0.0 kPa; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.113; data-to-parameter ratio = 14.0.

In the title compound, $C_{30}H_{31}NO_3$, the tolyl ring is almost coplanar with the isoxazole ring [dihedral angle = $12.51 (7)^{\circ}$], whereas the methoxyphenyl ring is almost perpendicular to the isoxazole ring [dihedral angle = $89.77 (5)^{\circ}$]. In the crystal, molecules are connected through $C-H\cdots O$ hydrogen bonds, forming chains running along the *a* axis.

Related literature

For general background on the chemical synthesis, see: Al Houari et al. (2010); Bruche & Zecchi (1983); Toth et al. (1999).

Experimental

Crystal data

C20H21NO2	V = 2432.4 (2) Å ³
$M_r = 453.56$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.9248 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 24.7919 (12) Å	T = 296 K
c = 14.2111 (7) Å	$0.34 \times 0.21 \times 0.20 \text{ mm}$
$\beta = 94.460 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD detector
diffractometer
21101 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 \\ wR(F^2) &= 0.113 \end{split}$$
312 parameters H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$ 4382 reflections

4382 independent reflections

 $R_{\rm int} = 0.036$

3165 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C17-H17\cdots O4^i$	0.93	2.44	3.313 (2)	156
Symmetry code: (i) x	-1, y, z.			

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the CNRST Morocco for making this work possible.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5399).

References

- Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36-43
- Bruche, L. & Zecchi, G. (1983). J. Org. Chem. 48, 2272-2278.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Toth, G., Balazs, B., Levai, A., Fisera, L. & Jedlovska, E. (1999). J. Mol. Struct. 508, 29-36.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o3040 [doi:10.1107/S1600536810044168]

4-*tert*-Butyl-4'-(4-methoxyphenyl)-3'-(4-methylphenyl)-1,2,3,4-tetrahydrospiro[naphthalene-2,5'(4'*H*)-1,2-oxazol]-1-one

M. Akhazzane, H. Zouihri, M. Daoudi, A. Kerbal and G. Al Houari

Comment

In the context of our research concerning the approach of dipole-dipolarophile in 1,3-dipolarcycloaddition, we have already studied the case where the dipole is an aryInitriloxide and the dipolarophiles are the 2-arylidenes of the 3,4-dihydronaph-thalen-1-one substituted by anisopropyle group in position 4 (Al Houari *et al.*, 2010).

We have shown that the ring closure reaction is highly regioselective and also highly diastereoselective. The relative configuration and conformation of the products have been determined by means of protonic magnetic resonance measurements.

In this paper we describe the regiochemistry and stereochemistry in the reaction of the para-tolylnitriloxide with the 4-*tert*-butyl-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1-one.

In general, the majority or unique regiochemistry we observe in the 1,3-dipolarcycloaddition of arylnitriloxydes with ethylenic dipolarophiles leads to anisoxazoline, where the electron-attracting or withdrawing substitutent of the dipolarophile is in position 5 of the isoxazoline (Bruche & Zecchi 1983). This is exactly what we observed in our case with this X-ray crystal structure study, where the carbonyl group is in position 5 of the isoxazoline. We also found out, that the axial disposition the tert-butyl group imposes an exclusive anti approach of the dipole. This stereochemistry is due to steric effects.

The dihedral angles between the benzene ring of the naphthalenone and the two rings of the methylbenzene and the methoxybenzene are 58.79 (9)° and 85.36 (9)°, respectively. In the crystal, molecules are connected through C—H…O hydrogen bonds, forming chains running along the *a* axis.

Experimental

In a 100 ml flask, we dissolved 2 mmol of the 4-*tert*-butyl-2-(4-methoxybenzylidene)-3,4-dihydronaphthalen-1-one and 2.4 mmol of *para* tolyle oxime in 20 ml chloroform. The mixture was cooled to 0°C under magnetic stirring in an ice bath. Then 15 ml of bleach at 18°C was added in small doses without exceeding 5°C. The mixture was left under magnetic stirring for 16 h at room temperature, then washed with water until the pH was neutral and dried on sodium sulfate. The solvent was evaporated with a rotating evaporator and the oily residue was dissolved in ethanol. The precipitated product was then recrystallized in ethanol.

Refinement

All H atoms were geometrically positioned and treated as riding with C—H ranging from 0.93 Å to 0.97Å and with $U_{iso}(H) = 1.2Ueq(C)$ or $U_{iso}(H) = 1.5Ueq(C_{methyl})$.

Figures

Fig. 1. Perspective view of the title compound showing the atom-labelling scheme and 30% probability displacement ellipsoids.

Fig. 2. : Partial packing diagram showing two molecules connected by a C-H…O hydrogen bond.

 $\label{eq:alpha} 4-tert-Butyl-4'-(4-methoxyphenyl)-3'-(4-methylphenyl)-1,2,3,4-tetrahydrospiro[naphthalene-2,5'(4'H)-1,2-oxazol]-1-one$

 $D_{\rm x} = 1.239 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2572 reflections

F(000) = 968

 $\theta = 1.7 - 25.1^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K

Block, yellow

 $0.34 \times 0.21 \times 0.20 \text{ mm}$

Crystal data

C₃₀H₃₁NO₃ $M_r = 453.56$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.9248 (3) Å b = 24.7919 (12) Å c = 14.2111 (7) Å $\beta = 94.460$ (2)° V = 2432.4 (2) Å³ Z = 4

Data collection

3165 reflections with $I > 2\sigma(I)$
$R_{\text{int}} = 0.036$
$\theta_{\text{max}} = 25.2^\circ, \ \theta_{\text{min}} = 2.9^\circ$
$h = -7 \rightarrow 8$
$k = -29 \rightarrow 29$
$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0578P)^2 + 0.2609P]$ where $P = (F_0^2 + 2F_c^2)/3$
4382 reflections	$(\Delta/\sigma)_{\rm max} = 0.005$
312 parameters	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	nic o	r ec	nivalent	isotro	nic dis	nlacement	parameters	$(Å^2$)
				1001.01			100000000000000000000000000000000000000	1001.01		p	p	(· · ·	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O4	0.63085 (15)	0.63345 (4)	0.73883 (8)	0.0474 (3)
N1	0.60997 (19)	0.58121 (5)	0.69829 (9)	0.0468 (3)
O2	0.36687 (18)	0.66608 (4)	0.57094 (7)	0.0543 (3)
C8	0.4373 (2)	0.65875 (6)	0.73832 (10)	0.0389 (4)
C15	0.3017 (2)	0.60949 (6)	0.73542 (10)	0.0391 (4)
H15	0.1879	0.6164	0.6917	0.047*
C10	0.5015 (2)	0.74455 (6)	0.64473 (11)	0.0427 (4)
C24	0.3633 (2)	0.51695 (6)	0.65106 (11)	0.0433 (4)
C5	0.4863 (2)	0.77684 (6)	0.72404 (11)	0.0427 (4)
C23	0.4304 (2)	0.56809 (6)	0.69348 (10)	0.0402 (4)
C9	0.4249 (2)	0.68879 (6)	0.64352 (11)	0.0412 (4)
C16	0.2379 (2)	0.59128 (6)	0.82979 (11)	0.0407 (4)
C21	0.3692 (2)	0.57148 (7)	0.89982 (12)	0.0488 (4)
H21	0.4973	0.5663	0.8865	0.059*
C6	0.3864 (2)	0.75536 (6)	0.80660 (11)	0.0426 (4)
H6	0.4421	0.7754	0.8616	0.051*
C7	0.4479 (2)	0.69652 (6)	0.82392 (11)	0.0454 (4)
H7A	0.5803	0.6965	0.8518	0.055*

supplementary materials

H7B	0.3675	0.6814	0.8703	0.055*
C27	0.2301 (3)	0.42282 (7)	0.55619 (12)	0.0537 (5)
O3	0.0559 (2)	0.55683 (6)	1.09572 (10)	0.0760 (4)
C29	0.4913 (3)	0.48045 (7)	0.61566 (12)	0.0508 (4)
H29	0.6238	0.4872	0.6233	0.061*
C18	-0.0083 (3)	0.58377 (7)	0.93966 (14)	0.0563 (5)
H18	-0.1374	0.5873	0.9524	0.068*
C17	0.0469 (2)	0.59639 (7)	0.85111 (12)	0.0485 (4)
H17	-0.0456	0.6085	0.8050	0.058*
C4	0.5666 (2)	0.82844 (7)	0.72359 (13)	0.0524 (4)
H4	0.5588	0.8507	0.7759	0.063*
C20	0.3150 (3)	0.55912 (7)	0.98906 (12)	0.0545 (5)
H20	0.4061	0.5462	1.0351	0.065*
C1	0.5907 (3)	0.76397 (7)	0.56714 (12)	0.0554 (5)
H1	0.5977	0.7423	0.5140	0.067*
C28	0.4250 (3)	0.43438 (7)	0.56943 (12)	0.0573 (5)
H28	0.5139	0.4105	0.5466	0.069*
C14	0.0526 (2)	0.73897 (8)	0.71858 (14)	0.0625 (5)
H14A	0.0694	0.7006	0.7240	0.094*
H14B	0.1011	0.7512	0.6608	0.094*
H14C	-0.0826	0.7476	0.7184	0.094*
C11	0.1637 (2)	0.76677 (7)	0.80208 (12)	0.0493 (4)
C19	0.1257 (3)	0.56609 (7)	1.00910 (13)	0.0528 (4)
C25	0.1675 (3)	0.50474 (7)	0.63929 (13)	0.0589 (5)
H25	0.0780	0.5281	0.6630	0.071*
C26	0.1035 (3)	0.45842 (8)	0.59279 (14)	0.0654 (5)
H26	-0.0286	0.4511	0.5861	0.078*
C2	0.6686 (3)	0.81497 (8)	0.56862 (14)	0.0660 (5)
H2	0.7288	0.8278	0.5168	0.079*
C12	0.1311 (3)	0.82777 (7)	0.79301 (15)	0.0679 (6)
H12A	-0.0038	0.8356	0.7967	0.102*
H12B	0.1712	0.8399	0.7334	0.102*
H12C	0.2056	0.8459	0.8433	0.102*
C3	0.6571 (3)	0.84692 (8)	0.64697 (14)	0.0625 (5)
H3	0.7109	0.8813	0.6483	0.075*
C13	0.0841 (3)	0.74815 (8)	0.89371 (15)	0.0709 (6)
H13A	-0.0504	0.7576	0.8931	0.106*
H13B	0.1548	0.7653	0.9462	0.106*
H13C	0.0978	0.7097	0.8995	0.106*
C22	0.1889 (4)	0.53982 (9)	1.17053 (14)	0.0829 (7)
H22A	0.2438	0.5057	1.1548	0.124*
H22B	0.1229	0.5361	1.2271	0.124*
H22C	0.2903	0.5661	1.1804	0.124*
C30	0.1581 (4)	0.37406 (8)	0.50084 (15)	0.0777 (6)
H30A	0.2000	0.3760	0.4381	0.117*
H30B	0.0192	0.3731	0.4978	0.117*
H30C	0.2093	0.3420	0.5314	0.117*

Atomic displacement parameters	$(Å^2$,
Atomic displacement parameters	(A))

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}		
O4	0.0394 (6)	0.0439 (7)	0.0576 (7)	0.0060 (5)	-0.0044 (5)	-0.0047 (5)		
N1	0.0483 (8)	0.0428 (8)	0.0492 (8)	0.0071 (6)	0.0034 (6)	-0.0030 (6)		
02	0.0736 (8)	0.0494 (7)	0.0383 (6)	-0.0022 (6)	-0.0061 (6)	-0.0056 (5)		
C8	0.0365 (8)	0.0413 (9)	0.0381 (8)	0.0063 (6)	-0.0033 (7)	-0.0006 (7)		
C15	0.0378 (8)	0.0398 (9)	0.0388 (9)	0.0063 (6)	-0.0030 (7)	-0.0009 (7)		
C10	0.0430 (9)	0.0430 (9)	0.0406 (9)	0.0019 (7)	-0.0069 (7)	0.0018 (7)		
C24	0.0560 (10)	0.0369 (9)	0.0376 (9)	0.0032 (7)	0.0085 (8)	0.0032 (7)		
C5	0.0381 (8)	0.0422 (9)	0.0460 (9)	0.0035 (7)	-0.0081 (7)	-0.0007 (7)		
C23	0.0456 (9)	0.0404 (9)	0.0345 (8)	0.0062 (7)	0.0032 (7)	0.0040 (7)		
С9	0.0411 (9)	0.0445 (9)	0.0372 (9)	0.0054 (7)	-0.0017 (7)	-0.0029 (7)		
C16	0.0403 (9)	0.0374 (9)	0.0440 (9)	0.0038 (7)	0.0012 (7)	-0.0030(7)		
C21	0.0418 (9)	0.0546 (10)	0.0501 (10)	0.0086 (8)	0.0044 (8)	0.0047 (8)		
C6	0.0453 (9)	0.0415 (9)	0.0399 (9)	0.0012 (7)	-0.0045 (7)	-0.0081 (7)		
C7	0.0496 (9)	0.0461 (9)	0.0390 (9)	0.0032 (7)	-0.0068 (7)	-0.0018 (7)		
C27	0.0784 (13)	0.0405 (10)	0.0451 (10)	-0.0084 (9)	0.0234 (9)	0.0001 (8)		
O3	0.0921 (11)	0.0759 (9)	0.0641 (9)	0.0008 (8)	0.0322 (8)	0.0040 (7)		
C29	0.0555 (10)	0.0463 (10)	0.0508 (10)	0.0090 (8)	0.0048 (8)	0.0003 (8)		
C18	0.0468 (10)	0.0543 (11)	0.0704 (13)	-0.0006 (8)	0.0201 (9)	-0.0068 (10)		
C17	0.0394 (9)	0.0475 (10)	0.0582 (11)	0.0040 (7)	0.0007 (8)	-0.0045 (8)		
C4	0.0535 (10)	0.0447 (10)	0.0573 (11)	-0.0014 (8)	-0.0068 (9)	-0.0052 (8)		
C20	0.0618 (12)	0.0540 (11)	0.0468 (10)	0.0065 (9)	-0.0008 (9)	0.0046 (8)		
C1	0.0668 (12)	0.0579 (11)	0.0406 (9)	-0.0050 (9)	-0.0020 (9)	0.0042 (8)		
C28	0.0785 (14)	0.0421 (10)	0.0531 (11)	0.0106 (9)	0.0167 (10)	-0.0024 (8)		
C14	0.0417 (10)	0.0650 (12)	0.0790 (13)	0.0087 (8)	-0.0065 (9)	-0.0132 (10)		
C11	0.0458 (9)	0.0427 (9)	0.0593 (11)	0.0038 (7)	0.0041 (8)	-0.0080 (8)		
C19	0.0651 (12)	0.0439 (10)	0.0515 (10)	-0.0020 (8)	0.0183 (9)	-0.0034 (8)		
C25	0.0593 (12)	0.0506 (11)	0.0696 (12)	-0.0037 (9)	0.0233 (10)	-0.0149 (9)		
C26	0.0650 (12)	0.0598 (12)	0.0744 (13)	-0.0160 (10)	0.0246 (10)	-0.0136 (10)		
C2	0.0793 (14)	0.0640 (13)	0.0540 (12)	-0.0154 (10)	0.0002 (10)	0.0130 (10)		
C12	0.0574 (11)	0.0515 (11)	0.0953 (16)	0.0108 (9)	0.0082 (11)	-0.0084 (11)		
C3	0.0661 (12)	0.0481 (11)	0.0714 (13)	-0.0119 (9)	-0.0069 (10)	0.0096 (10)		
C13	0.0679 (13)	0.0667 (13)	0.0807 (15)	0.0000 (10)	0.0229 (11)	-0.0093 (11)		
C22	0.123 (2)	0.0746 (15)	0.0527 (12)	-0.0013 (13)	0.0153 (13)	0.0083 (11)		
C30	0.1067 (17)	0.0560 (12)	0.0748 (14)	-0.0238 (11)	0.0348 (12)	-0.0173 (11)		
Geometric para	meters (Å, °)							
04—N1		1,4203 (16)	C18–	-C17	1 37	9 (2)		
04—C8		1.4795 (17)	C18–	-H18	0.93	00		
N1—C23		1.282 (2)	C17–	-H17	0.93	00		
02		1.2157 (17)	C4—	C4-C3		1.376 (3)		

supplementary materials

C15—C16	1.513 (2)	C1—H1	0.9300
C15—H15	0.9800	C28—H28	0.9300
C10—C1	1.391 (2)	C14—C11	1.527 (2)
C10—C5	1.393 (2)	C14—H14A	0.9600
С10—С9	1.480 (2)	C14—H14B	0.9600
C24—C25	1.386 (2)	C14—H14C	0.9600
C24—C29	1.388 (2)	C11—C13	1.524 (3)
C24—C23	1.464 (2)	C11—C12	1.533 (2)
C5—C4	1.395 (2)	C25—C26	1.381 (2)
C5—C6	1.505 (2)	С25—Н25	0.9300
C16—C21	1.385 (2)	С26—Н26	0.9300
C16—C17	1.386 (2)	C2—C3	1.374 (3)
C21—C20	1.385 (2)	С2—Н2	0.9300
C21—H21	0.9300	C12—H12A	0.9600
C6—C7	1.534 (2)	C12—H12B	0.9600
C6—C11	1.565 (2)	C12—H12C	0.9600
С6—Н6	0.9800	С3—Н3	0.9300
C7—H7A	0.9700	С13—Н13А	0.9600
С7—Н7В	0.9700	С13—Н13В	0.9600
C27—C26	1.375 (3)	С13—Н13С	0.9600
C27—C28	1.378 (3)	C22—H22A	0.9600
C27—C30	1.506 (3)	C22—H22B	0.9600
O3—C19	1.376 (2)	C22—H22C	0.9600
O3—C22	1.416 (3)	C30—H30A	0.9600
C29—C28	1.379 (2)	С30—Н30В	0.9600
С29—Н29	0.9300	С30—Н30С	0.9600
C18—C19	1.373 (3)		
N1—O4—C8	108.72 (10)	С5—С4—Н4	119.5
C23—N1—O4	108.71 (12)	C19—C20—C21	119.53 (16)
O4—C8—C7	105.51 (11)	С19—С20—Н20	120.2
O4—C8—C9	101.45 (11)	C21—C20—H20	120.2
С7—С8—С9	113.32 (13)	C2-C1-C10	120.28 (17)
O4—C8—C15	102.37 (11)	С2—С1—Н1	119.9
C7—C8—C15	119.86 (13)	С10—С1—Н1	119.9
C9—C8—C15	111.66 (12)	C27—C28—C29	121.60 (17)
C23—C15—C16	111.63 (12)	C27—C28—H28	119.2
C23—C15—C8	99.94 (12)	С29—С28—Н28	119.2
C16—C15—C8	115.64 (12)	C11—C14—H14A	109.5
С23—С15—Н15	109.7	C11-C14-H14B	109.5
C16—C15—H15	109.7	H14A—C14—H14B	109.5
C8—C15—H15	109.7	C11—C14—H14C	109.5
C1—C10—C5	120.57 (15)	H14A—C14—H14C	109.5
C1—C10—C9	119.66 (14)	H14B—C14—H14C	109.5
C5—C10—C9	119.77 (14)	C13—C11—C14	109.46 (16)
C25—C24—C29	117.40 (16)	C13—C11—C12	108.05 (15)
C25—C24—C23	120.98 (14)	C14—C11—C12	108.54 (15)
C29—C24—C23	121.49 (15)	C13—C11—C6	109.33 (14)
C10—C5—C4	117.91 (16)	C14—C11—C6	112.68 (13)
C10—C5—C6	119.71 (14)	C12—C11—C6	108.66 (14)

C4—C5—C6	122.38 (15)		C18—C19—C20		119.58 (16)
N1—C23—C24	121.15 (14)		C18—C19—O3		115.57 (17)
N1—C23—C15	113.93 (14)		C20—C19—O3		124.85 (18)
C24—C23—C15	124.92 (14)		C26—C25—C24		120.92 (17)
O2—C9—C10	122.47 (14)		С26—С25—Н25		119.5
02—C9—C8	120.78 (14)		С24—С25—Н25		119.5
C10C9C8	116.56 (13)		C27—C26—C25		121.64 (19)
C21—C16—C17	117.39 (15)		С27—С26—Н26		119.2
C21—C16—C15	121.45 (14)		С25—С26—Н26		119.2
C17—C16—C15	121.08 (14)		C3—C2—C1		119.70 (18)
C20—C21—C16	121.81 (16)		С3—С2—Н2		120.1
C20-C21-H21	119.1		C1—C2—H2		120.1
C16—C21—H21	119.1		C11—C12—H12A		109.5
C5—C6—C7	108.84 (13)		C11—C12—H12B		109.5
C5—C6—C11	114.54 (13)		H12A—C12—H12B		109.5
C7—C6—C11	116.04 (13)		C11—C12—H12C		109.5
С5—С6—Н6	105.5		H12A—C12—H12C		109.5
С7—С6—Н6	105.5		H12B-C12-H12C		109.5
С11—С6—Н6	105.5		C2—C3—C4		120.53 (17)
C8—C7—C6	117.26 (12)		С2—С3—Н3		119.7
С8—С7—Н7А	108.0		С4—С3—Н3		119.7
С6—С7—Н7А	108.0		C11—C13—H13A		109.5
С8—С7—Н7В	108.0		С11—С13—Н13В		109.5
С6—С7—Н7В	108.0		H13A—C13—H13B		109.5
H7A—C7—H7B	107.2		С11—С13—Н13С		109.5
C26—C27—C28	117.49 (17)		H13A—C13—H13C		109.5
C26—C27—C30	121.20 (19)		H13B—C13—H13C		109.5
C28—C27—C30	121.27 (17)		O3—C22—H22A		109.5
C19—O3—C22	117.91 (17)		O3—C22—H22B		109.5
C28—C29—C24	120.93 (17)		H22A—C22—H22B		109.5
С28—С29—Н29	119.5		O3—C22—H22C		109.5
С24—С29—Н29	119.5		H22A—C22—H22C		109.5
C19—C18—C17	120.57 (17)		H22B—C22—H22C		109.5
C19—C18—H18	119.7		С27—С30—Н30А		109.5
C17—C18—H18	119.7		С27—С30—Н30В		109.5
C18—C17—C16	121.04 (16)		H30A—C30—H30B		109.5
C18—C17—H17	119.5		С27—С30—Н30С		109.5
С16—С17—Н17	119.5		H30A-C30-H30C		109.5
C3—C4—C5	121.00 (17)		H30B-C30-H30C		109.5
C3—C4—H4	119.5				
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C17—H17····O4 ⁱ		0.93	2.44	3.313 (2)	156

Symmetry codes: (i) x-1, y, z.

